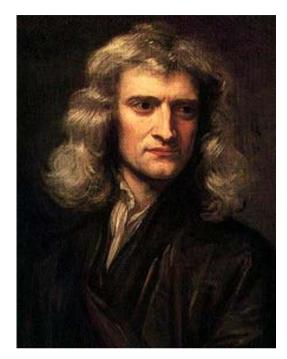
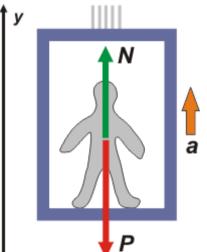


Báscula en un ascensor C3D FÍSICA 1 CURSO 2012-2013


INTRODUCCIÓN

La identificación de la variación de fuerzas en determinadas condiciones y diversos momentos (intervalos de tiempo) es crucial para el tratamiento de cargas o implementación de procesos a los cuales se recurre cotidianamente, mediante el uso aplicado de las 3 leves de Newton.


EJEMPLOS: Elevadores de carga industrial, construcción de maquinaria, transporte, etc.

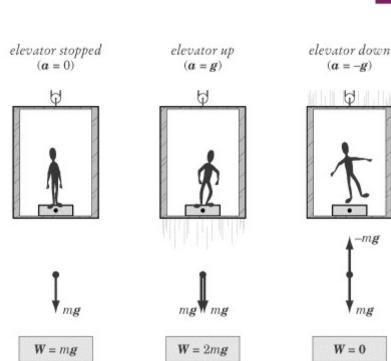
OBJETIVO

Comprobar de forma práctica y mediante las leyes de Newton la variación del comportamiento de las fuerzas que intervienen en un sistema de acuerdo al cambio de condiciones.

MATERIALES

- •Báscula.
- •Ascensor.

MONTAJE


Se coloca la báscula donde deberá ir una persona en el interior del ascensor. Se examina cuál es el peso registrado por la báscula inicialmente y luego se termina el destino del ascensor uno debe ser un piso superior y otro uno inferior y en cada uno de los viajes del ascensor se registra el nuevo peso registrado por la báscula.

EXPLICACIÓN

Inicialmente con la masa de prueba dentro del ascensor en reposo, se observa mediante la primera y tercera ley de Newton (ley de la inercia y ley de acción-reacción) que la masa sobre la báscula presentará un estado inicial en equilibrio de fuerzas, donde la báscula, la cual mide la normal, registrará el peso debido a que en dicho estado la normal y el peso coinciden.

Posteriormente, de acuerdo al movimiento del ascensor este equilibrio tendera a alterarse. Teniendo en cuenta la segunda ley de Newton (ley del movimiento) se explica dicho cambio, el cual se verá reflejado en el cambio de la normal registrada por la báscula.

CONCEPTOS

- •Inercia
- •Fuerza
- •Leyes de Newton
- •Peso

Universida_{de}Vigo

MÁS INFORMACIÓN

WIKIPEDIA: http://es.wikipedia.org/wiki/Leyes_de_Newton WIKIPEDIA: http://es.wikipedia.org/wiki/Isaac_Newton

YOUTUBE: http://www.youtube.com/watch?v=eA1rT8q5a3k (vídeo propio)

YOUTUBE: http://www.youtube.com/watch?v=xVKLkaC-6VQ
YOUTUBE: http://www.youtube.com/watch?v=q8qKMLyTxpM

SCHOLAR GOOGLE: http://scholar.google.es/ ("NEWTON'S LAWS" 125.000) SCHOLAR GOOGLE: http://scholar.google.es/ ("ISAAC NEWTON" 149.000)

BIBLIOGRAFÍA:

«Ciencias físicas» (2004) de F. Bueche

«Mecánica vectorial para ingenieros: Dinámica» (1998) de James L. Meriam

«Física para la ciencia y la tecnología» (2008) de Paul A. Tipler

«Mecánica newtoniana» (1978) de Antonhy P. French

Universida_{de}Vigo