Memoria de forma
14 mar, 2013
Nitinol
PRESENTACIÓN: El nitinol es una aleación con memoria de forma compuesto de níquel y titanio. A baja temperatura es un material que se deforma fácilmente, mientras que a temperaturas superiores se hace duro y frágil. La transición por temperatura entre esos estados es repentina.
- Undergraduate investigation of nitinol, Jane A. Slezak and Ronald W. Veresko, Phys. Teach. 30, 42 (1992)
31 responses to "Memoria de forma"
Xa coñecía este fenómemo e sempre me pareceu algo sorprendente. Como un material é capaz de «recordar» a súa forma orixinal. Sen embargo, non comprendo o principio físico subyacente a este suceso. Que é o que fai que o material volva a ser como era nun principio por un cambio de temperatura?
A peculiar resposta das aliaxes con memoria de forma (SMA, Shape Memory Alloy) ante as variacións de temperatura ou nivel de tensión fíxoas merecedoras da súa denominación como materiais intelixentes. Para ilustrar a capacidade destes materiais de recuperar (ou “recordar”) a súa forma orixinal despois dunha deformación aparentemente plástica emprégase unha aliaxe níquel-titanio coñecida como nitinol que se quenta, tras deformarse previamente, mediante un secador de pelo ou auga quente, evolucionando desde unha estrutura martensítica estable a baixa temperatura á correspondente á fase estable a alta temperatura.
Mira por exemplo:
Richard Lin. Shape Memory Alloys and Their Applications
Respondendo a algúns comentarios, atopei un vídeo en Youtube que explica o fenómeno. Ademáis, mostra un interesante fenómeno no cal debido a os cambios de temperatura do nitinol se pode facer funcionar un pequeno motor.
He estado leyendo a cerca de este tema, porque lo desconocía por completo y además, al igual que Alexandre me parecía sorprendente. Me pregunté para que se podría utilizar esta propiedad de ciertos materiales y he encontrado que la aleación de niquel y titanio en proporciones equiatómicas es biocompatible por lo que se usa mucho en medicina.
Por ejemplo: en traumatología se fabrican grapas que se introducen deformadas (martensita) y, al adquirir la T del cuerpo humano recuperan su forma previa (austenita) que obliga a recolocar los huesos fracturados, manteniéndolos unidos durante su curación; antes de implantarse las grapas deben de mantenerse a bajas temperaturas.
He seguido buscando información sobre este tema, y he visto que hay materiales con memoria de forma de un camino, de dos caminos, con superelasticidad y anelasticidad….¿a qué hacen referencia estos cuatro últimos términos? o ¿cuál es la diferencia?
Porque he buscado para aclarar pero no he encontrado nada «comprensible»…
Los metales y aleaciones con memoria de formas se caracterizan por sufrir un cambio de estructura cristalina que no depende del tiempo, sólo de la temperatura o esfuerzos mecánicos (martensita a austenita al aumentar la temperatura) y que además es reversible. La martensita es mucho más fácil de moldear que la austenita, por eso, si aumentamos la temperatura por encima de un cierto valor transformamos la martensita (M) en austenita (A), si con esa estructura cristalina le damos forma y enfriamos el metal conserva esa forma si no lo deformamos, pero con estructura de M. Como la estructura M es mucho más dúctil es muy fácil «deshacer» la forma original, pero si aumentamos de nuevo la T el metal pasa a austenita recuperando la forma que le hemos dado cuando estaba a esa T. Ese sería el mecanismo de «un camino». El de dos caminos es un poco más complicado, es necesario además de aumentar la temperatura aplicar tensión. La superelasticidad está relacionado con todo esto: cuando el metal está en forma de A y lo estiramos puede producirse la transformación a M, como esta estructura es más dúctil vamos a conseguir grandes deformaciones en esas condiciones. Si liberamos la carga volvemos a la estructura de A y a la forma original, sin deformación aparente, después de sufrir deformaciones elásticas muy superiores a las de los metales «normales». Respecto a la anelasticidad, hace referencia a que la recuperación elástica depende del tiempo (en la mayor parte de los metales es instantánea).
En cualquier caso no es el comportamiento general de los metales, en la mayor parte de los casos la transformación austenita-martensita es irreversible, con lo que no hay efecto memoria. En los plásticos, sin embargo, es lo más habitual.
Gracias a su capacidad de memoria de forma, el nitiniol se utiliza en medicina como cilindros-mallas autoexpansibles (Stent) para tratar problemas de vasos sanguíneos .
Este fenómeno de memoria que posee el nitinol, que permite que una pieza que haya sido deformada recuerde y pueda volver mediante calentamiento a la forma predeterminada es algo sorprendente. El siguiente vídeo ilustra este mismo efecto con un «clip metálico».
El nitinol tiene desde aplicaciones médicas (es un material biocompatible) hasta en ingeniería. La transformación que sufre es un cambio de fase en su estructura cristalina. Tiene dos formas, austenita y martensita. En su forma austenita el material es fuerte y se forma a altas temperaturas mientras que en el martensita el material es débil y se encuentra a bajas temperaturas. Además de un material con memoria de forma, el nitinol posee superelasticidad.
Las aplicaciones del nitinol derivan de sus dos propiedades fundamentales: la superelasticidad y la recuperación de la forma por calentamiento. Es, por lo tanto un material superelástico que se emplea en medicina, por ejemplo como cilindros-mallas autoexpansibles para mantener permeabilidad de vasos sanguíneos. Os dejo un vídeo en el que se explica más sobre el nitinol.
No sé si alguien ya lo habrá comentado en algún otro post, pero ¿alguien se acuerda de Uri Geller? Uri Geller es un ilusionista que se hizo famoso por sus supuestos poderes telepáticos por los que reproducía dibujos encerrado en una habitación aislada y sí, por doblar cucharas con la mente!!! (link). Sabiendo que el calor necesario para que el nitinol recupere su forma original es muy bajo, ¿podría estar usando cucharas de este material? Se puede encontrar más información sobre Uri Geller y el nitinol en este artículo.
Lo cierto es que hasta hace poco no tenía ni idea de que algo así pudiera existir, ya que, normalmente existe la tendencia a asociar el metal con algo rígido salvo que se leve en exceso su temperatura para poder trabajarlo. Es un concepto muy interesante, además de muy sencillo de entender y explicar visualmente. Al parecer las aleaciones con memoria de forma están cobrando importancia en industrias como la medicina, odontología y electrónica. Aunque la más empleada de estas es el nitinol (níquel-titanio), la primera en la que se apreció este efecto fue en una de cadmio-oro.
En este vídeo explican como darle forma al nitinol.
Mas aplicaciones. En aplicaciones como actuadores, se emplean en la actualidad en la fabricación de válvulas termostáticas para calefacción, que funcionan oponiendo dos muelles, uno de acero convencional, con una constante de elasticidad que se puede considerar constante con la temperatura y otro de AMF que a baja temperatura es fácilmente deformable y abrirá la válvula, mientras que cuando llegue a una cierta temperatura se transformará en austenita, recuperando la forma original y actuando en contra del muelle de acero, que cerrará la válvula.
Como ya se ha mencionado, el nitinol no fue la primera aleación con memoria de forma descubierta. Esta propiedad de algunas aleaciones ya se conocía desde 1932, pero no fue hasta la década de los 60 cuando William Beuhler descubrió este efecto en una aleación hecha de un 55% de níquel y un 45% de titanio. Los símbolos de estos elementos químicos junto con el nombre del laboratorio donde se descubrió, le dan nombre a la aleación: Ni (níquel), Ti (titanio), NOL (Naval Ordinance Laboratory). Su descubrimiento fue casual, ya que en realidad estaban buscando aleaciones resistentes a la corrosión. Aunque resultó un importante hallazgo dado su relativo bajo coste y su inocuidad, a diferencia de otras aleaciones con memoria de forma que mostraban cierta toxicidad. Gracias a estas características el nitinol se ha podido utilizar, por ejemplo, en medicina.
Este experimento resulta muy llamativo y original si tuviera que presentarse en una clase. Este tipo de materiales se podrían definir como aquellos capaces de “recordar” su forma y capaces de volver a esa forma después de haber sido deformados. Este efecto de memoria se puede producir por cambio térmico o magnético. Además, son capaces de repetir este proceso infinidad de veces sin deteriorase. En el caso de este vídeo, se trata el Nitinol que es una aleación de níquel y titanio en proporciones casi equimolares y que tiene propiedades de memoria de forma excelentes. Esta aleación particular, tiene además muy buenas propiedades eléctricas y mecánicas, resistencia a la fatiga, y resistencia a la corrosión. Las propiedades de las aleaciones con memoria de forma son: transformación martensítica termoelástica, memoria de forma simple, memoria de forma doble, superelasticidad, pseudoelasticidad y capacidad de amortiguamiento. Este tipo de metales poseen diferentes aplicaciones: recubrimiento apretado, fuerza de acción, control proporcional, aplicaciones superelásticas o aplicaciones médicas. Todas estas se explican en el siguiente enlace. El Nitinol no es el único material con memoria de forma, existen otras muchas aleaciones que presentan estos mecanismos de memoria, tal y como se puede leer en el siguiente pdf.
Los materiales con memoria tienen la capacidad de “recordar” su forma y volver a ella después de haber sido deformados. Este efecto de memoria se puede producir por cambio térmico o magnético. Además, son capaces de repetir este proceso infinidad de veces sin deteriorase.
El experimento que se muestra es muy representativo y en el siguiente enlace se recoge otro en el que se utiliza un envase de yogur. Son experimentos fáciles y poco costosos, a través de los cuales los alumnos pueden familiarizarse con el concepto de memoria de forma, que ha cobrado gran interés comercial en los últimos años puesto que puede tener utilidad en campos como la medicina, la odontología y aplicaciones electrónicas.
Estos materiales son muy interesantes ya que son capaces de la forma que tenían después de haber sido deformados. Esto se puede producir por temperatura o magnetismo, y como dicen en el video, se puede repetir el proceso infinitas veces.
Esta actividad es muy llamativa y motivadora para el alumnado, y con la que se podría conseguir una mayor implicación y asimilación de conceptos. Ver la importancia de las aleaciones, sus propiedades y aplicaciones. Además, actualmente estos materiales con memoria de forma tienen gran aplicación principalmente en temas relacionados con la mecánica y electrónica.
No tenía ni idea de que existiera este material! Parece magia completamente!!
Estuve leyendo sobre esto y me parece interesante la forma en que se van sucediendo los avances científicos: de querer obtener un material resistente para un misil a encontrar un material que se puede aplicar a muchísimos campos como la medicina o la electrónica. Dejo aquí un artículo que habla sobre esto y que incluye un vídeo en el que se ve cómo un alambre de Nitinol recupera su forma original aplicando el calor de una vela.
Las aleaciones con memoria de forma son materiales metálicos que tienen la peculiaridad de ser deformados a baja temperatura y posteriormente, al ser calentados, regresar a la forma que tenían antes de sufrir la deformación. En 1960, un grupo de científicos descubrió esta propiedad en una aleación de níquel y titanio conocida como nitinol.
Este efecto memoria en las aleaciones se debe a un cambio de estructura cristalina en el metal, además estos materiales presentan también una gran elasticidad. Las aplicaciones de los mismos: alambres de ortodoncia, instrumentos de endodoncia, stent vascular, tuberías inteligentes…
Realmente increíble, parece magia mismamente! Tras buscar un poco más de información sobre este tipo de materiales, he encontrado que no solamente existen aleaciones como el nitinol que presentan memoria de forma, sino que entre otros materiales, como por ejemplo cerámicas «Shape Memory Ceramics». En el siguiente artículo se puede encontrar más información. Referencia: Lai, A., Du, Z., Gan, C. L., & Schuh, C. A. (2013). Shape memory and superelastic ceramics at small scales. Science, 341(6153), 1505-1508.
El vídeo es muy breve pero sorprendente. Aquí añado algunos vídeos más sobre metales que memorizan su forma: 1; 2 y 3.
Me sorprendió mucho ver este experimento en directo y como el material recuperaba su forma original al contacto con el calor. Buscando en la web más información sobre este tema, me encontré con que estos materiales basados en aleaciones níquel-titanio son biocompatibles, y tienen una aplicación importante en medicina: grapas para lesiones óseas, arcos de ortodoncia, stents… entre otros. En el Instituto de Ciencia de Materiales de Aragón investigan sobre la aplicación de este tipo de materiales con memoria de forma en medicina.
En relación al experimento con un envase de yogurt mencionado por Lara en diciembre del 2018, he estado buscando información sobre el uso de polímeros con memoria de forma en la industria alimentaria y puedo aportar el siguiente artículo. Cabe mencionar que la mayor parte de los resultados obtenidos sobre la aplicación de estos polímeros tienen relación con el campo de la medicina, como ya se ha mencionado en otros comentarios. Entre mi búsqueda me he topado con este documento en el que se explica muy bien el funcionamiento de estos polímeros. Además, para aquellos que estén interesados en el campo de los polímeros inteligentes he encontrado un informe en el que se clasifican según los siguientes puntos de vista:
• Según el material polimérico,
• Atendiendo al estímulo que reciben y
• Atendiendo a la respuesta que proporcionan.
Me ha parecido un experimento muy interesante ya que, además de explicar el funcionamiento de los materiales con memoria de forma, es muy espectacular para enseñárselo a los alumnos. Como se ha dicho en comentarios anteriores, tiene muchas aplicaciones interesantes. Una de las que me ha parecido más interesante es una que está en desarrollo, para la construcción de estructuras resistentes a los terremotos. En la siguiente noticia, se explica en profundidad como los investigadores están desarrollando ecuaciones para evaluar lo que sucede cuando las aleaciones con memoria de forma son sometidas a diferentes cargas y movimientos fuertes.
Guau! Este tipo de experimentos para explicar el cambio de propiedades entre metales puros y aleaciones. No puedo creer que no estén los institutos llenos de este tipo de material para lograr que los alumnos tengan interés por la ciencia.
Vaya, realmente me ha sorprendido el resultado del experimento! Me parece un mini experimento breve, sencillo y fácil de reproducir en el aula, a la vez que es muy visual para explicar al alumnado el concepto de aleación y el efecto memoria de forma de algunos materiales.
En este artículo nos explican qué es el Nitinol y por qué tiene efecto de memoria. Los vídeos que ahí nos podemos encontrar muestran cómo trabajan con el material aplicando fuego sobre él, en lugar de agua. En el último video de este post, se muestra como fuerzan al Nitinol a que tenga una nueva forma inicial, sometiéndolo a altas temperaturas sin poderse mover para luego modificar su forma y demostrar que vuelve a esa nueva forma inicial que le han dado.
Este tipo de experimentos son súper interesantes por el mero hecho de ser antiintuitivos, ya que nos cuesta pensar en un material que va a cambiar de forma a otra previamente diseñada tan bruscamente. Aquí dejo un enlace donde viene recogido todo lo relacionado con los materiales con memoria de forma, desde cuál es su definición, hasta su clasificación según su composición; o sus aplicaciones.
Esta memoria de la forma puede aportar gran valor al diseño de productos. En este caso dejo una aplicación en la joyería, donde la pieza cobra vida.
Que sorprendente es este experimento, la “memoria” que tiene el nitinol y que también poseen otras aleaciones como bien se puede observar en este vídeo. Las aplicaciones del nitinol están extendidas en medicina como cánulas intravenosas, sistemas de unión y separadores, alambres dentales en ortodoncia,… En robótica también se utiliza como músculos artificiales, resortes, tiradores… Gran variedad de aplicaciones que sería muy interesante que los estudiantes conociesen con la realización de este experimento tan simple y visual.
Un material con memoria de forma es aquel que tiene la capacidad de recordar una forma previamente establecida, incluso después de sufrir serias deformaciones como los aumentos de temperatura. Los materiales con esta propiedad tienen distintas aplicaciones. Un ejemplo curioso son las grapas especiales que se utilizan en traumatología. Estas se introducen en el cuerpo en su fase deformada (martensita) y, cuando alcanzan la temperatura del cuerpo humano, recuperan su forma previa (austenita). Estas permiten la recolocación de los huesos fracturados, pues los mantienen unidos durante su curación. Antes de ser implantadas, este tipo de grapas debe a bajas temperaturas.
La verdad es increíble observar este fenómeno. Muy buena opción para utilizar en clase y llamar la atención de los alumnos, sin duda. También es importante transmitirles la numerosas utilidades que puede tener en nuestra vida, como se ha comentado ya, para fomentar su interés por la ciencia. Este artículo muestra alguna de estas aplicaciones, muy interesante.